Zhang J, Wang P, Yang M X, Gu Q, Ji B M. Plant-soil feedbacks and succession dynamics of plant community in grassland: the roles of mycorrhizal fungi and soil pathogens. Acta Ecologica Sinica, 2021, 41(24): 9878-9885.
图 1 两种植物及其对应土壤微生物的反馈作用(改自Bever 2003, 2012)[17-18]Fig. 1 Schematic graph of plant-soil feedback for the potential interactions between two plant species and their soil microorganisms
图中A和B分别代表两种植物, SA和SB分别代表植物A和B驯化的土壤微生物(黑色粗箭头), αA和αB分别表示SA对宿主植物A和共存植物B的影响(蓝色粗箭头), βB和βA分别表示SB对宿主植物B和共存植物A的影响(黄色粗箭头), CA表示植物A对植物B的相对竞争优势(黑色细箭头), CB表示植物B对植物A的相对竞争优势(黑色细箭头), IS为植物-土壤反馈系数
Wardle D A, Bardgett R D, Klironomos J N, Setälä H, van der Putten W H, Wall D H. Ecological linkages between aboveground and belowground biota. Science, 2004, 304(5677): 1629-1633. DOI:10.1126/science.1094875
[2]
Helgason T, Fitter A H. Natural selection and the evolutionary ecology of the arbuscular mycorrhizal fungi (Phylum Glomeromycota). Journal of Experimental Botany, 2009, 60(9): 2465-2480. DOI:10.1093/jxb/erp144
[3]
Fitter A H. Darkness visible: reflections on underground ecology. Journal of Ecology, 2005, 93(2): 231-243. DOI:10.1111/j.0022-0477.2005.00990.x
[4]
Bever J D. Feeback between plants and their soil communities in an old field community. Ecology, 1994, 75(7): 1965-1977. DOI:10.2307/1941601
[5]
Bever J D. Dynamics within mutualism and the maintenance of diversity: inference from a model of interguild frequency dependence. Ecology Letters, 1999, 2(1): 52-61. DOI:10.1046/j.1461-0248.1999.21050.x
[6]
Ehrenfeld J G, Ravit B, Elgersma K. Feedback in the plant-soil system. Annual Review of Environment and Resources, 2005, 30(1): 75-115. DOI:10.1146/annurev.energy.30.050504.144212
[7]
Klironomos J N. Feedback with soil biota contributes to plant rarity and invasiveness in communities. Nature, 2002, 417(6884): 67-70. DOI:10.1038/417067a
[8]
Crawford K M, Bauer J T, Comita L S, Eppinga M B, Johnson D J, Mangan S A, Queenborough S A, Strand A E, Suding K N, Umbanhowar J, Bever J D. When and where plant-soil feedback may promote plant coexistence: a meta-analysis. Ecology Letters, 2019, 22(8): 1274-1284. DOI:10.1111/ele.13278
[9]
Zhang R F, Vivanco J M, Shen Q R. The unseen rhizosphere root-soil-microbe interactions for crop production. Current Opinion in Microbiology, 2017, 37: 8-14. DOI:10.1016/j.mib.2017.03.008
[10]
Wang G Z, Li H G, Christie P, Zhang F S, Zhang J L, Bever J D. Plant-soil feedback contributes to intercropping overyielding by reducing the negative effect of take-all on wheat and compensating the growth of faba bean. Plant and Soil, 2017, 415(1-2): 1-12. DOI:10.1007/s11104-016-3139-z
[11]
van der Putten W H, Bardgett R D, Bever J D, Bezemer T M, Casper B B, Fukami T, Kardol P, Klironomos J N, Kulmatiski A, Schweitzer J A, Suding K N, Van de Voorde T F J, Wardle D A. Plant-soil feedbacks: the past, the present and future challenges. Journal of Ecology, 2013, 101(2): 265-276. DOI:10.1111/1365-2745.12054
[12]
Jiang L L, Han X G, Zhang G M, Kardol P. The role of plant-soil feedbacks and land-use legacies in restoration of a temperate steppe in northern China. Ecological Research, 2010, 25(6): 1101-1111. DOI:10.1007/s11284-010-0735-x
[13]
Bardgett R D, Manning P, Morriën E, de Vries F T. Hierarchical responses of plant-soil interactions to climate change: consequences for the global carbon cycle. Journal of Ecology, 2013, 101(2): 334-343. DOI:10.1111/1365-2745.12043
[14]
Bardgett R D, Wardle D A. Aboveground-belowground linkages: biotic interactions, ecosystem processes and global change. New York: Oxford University Press, 2010.
[15]
Bever J D, Mangan S A, Alexander H M. Maintenance of plant species diversity by pathogens. Annual Review of Ecology, Evolution, and Systematics, 2015, 46: 305-325. DOI:10.1146/annurev-ecolsys-112414-054306
[16]
Mariotte P, Mehrabi Z, Bezemer T M, De Deyn G B, Kulmatiski A, Drigo B, Veen G F, van der Heijden M G A, Kardol P. Plant-soil feedback: bridging natural and agricultural sciences. Trends in Ecology & Evolution, 2018, 33(2): 129-142.
[17]
Bever J D. Soil community feedback and the coexistence of competitors: conceptual frameworks and empirical tests. New Phytologist, 2003, 157(3): 465-473. DOI:10.1046/j.1469-8137.2003.00714.x
[18]
Bever J D, Platt T G, Morton E R. Microbial population and community dynamics on plant roots and their feedbacks on plant communities. Annual Review of Microbiology, 2012, 66: 265-283. DOI:10.1146/annurev-micro-092611-150107
[19]
Callaway R M, Thelen G C, Rodriguez A, Holben W E. Soil biota and exotic plant invasion. Nature, 2004, 427(6976): 731-733. DOI:10.1038/nature02322
[20]
Kardol P, Bezemer T M, van der Putten W H. Temporal variation in plant-soil feedback controls succession. Ecology Letters, 2006, 9(9): 1080-1088. DOI:10.1111/j.1461-0248.2006.00953.x
[21]
Brooker R W, Maestre F T, Callaway R M, Lortie C L, Cavieres L A, Kunstler G, Liancourt P, Tielbörger K, Travis J M J, Anthelme F, Armas C, Coll L, Corcket E, Delzon S, Forey E, Kikvidze Z, Olofsson J, Pugnaire F I, Quiroz C L, Saccone P, Schiffers K, Seifan M, Touzard B, Michalet R. Facilitation in plant communities: the past, the present, and the future. Journal of Ecology, 2008, 96(1): 18-34.
[22]
Reynolds H L, Packer A, Bever J D, Clay K. Grassroots ecology: Plant-microbe-soil interactions as drivers of plant community structure and dynamics. Ecology, 2003, 84(9): 2281-2291. DOI:10.1890/02-0298
[23]
Packer A, Clay K. Soil pathogens and spatial patterns of seedling mortality in a temperate tree. Nature, 2000, 404(6775): 278-281. DOI:10.1038/35005072
[24]
Wang G Z, Schultz P, Tipton A, Zhang J L, Zhang F S, Bever J D. Soil microbiome mediates positive plant diversity-productivity relationships in late successional grassland species. Ecology Letters, 2019, 22(8): 1221-1232. DOI:10.1111/ele.13273
[25]
杜青林. 中国草业可持续发展战略. 北京: 中国农业出版社, 2006.
[26]
Bever J D. Negative feedback within a mutualism: host-specific growth of mycorrhizal fungi reduces plant benefit. Proceedings of the Royal Society B, 2002, 269(1509): 2595-2601. DOI:10.1098/rspb.2002.2162
[27]
van der Heijden M G A, Martin F M, Selosse M A, Sanders I R. Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytologist, 2015, 205(4): 1406-1423. DOI:10.1111/nph.13288
[28]
Brundrett M C, Tedersoo L. Evolutionary history of mycorrhizal symbioses and global host plant diversity. New Phytologist, 2018, 220(4): 1108-1115. DOI:10.1111/nph.14976
[29]
Smith S E, Read D J. Mycorrhizal symbiosis. .
[30]
Koide R T, Mosse B. A history of research on arbuscular mycorrhiza. Mycorrhiza, 2004, 14(3): 145-163. DOI:10.1007/s00572-004-0307-4
Govindarajulu M, Pfeffer P E, Jin H R, Abubaker J, Douds D D, Allen J W, Bücking H, Lammers P J, Shachar-Hill Y. Nitrogen transfer in the arbuscular mycorrhizal symbiosis. Nature, 2005, 435(7043): 819-823. DOI:10.1038/nature03610
[33]
Ngwene B, Gabriel E, George E. Influence of different mineral nitrogen sources (NO3--N vs. NH4+-N) on arbuscular mycorrhiza development and N transfer in a Glomus intraradices-cowpea symbiosis. Mycorrhiza, 2013, 23(2): 107-117. DOI:10.1007/s00572-012-0453-z
Ji B M, Bentivenga S P, Casper B B. Evidence for ecological matching of whole AM fungal communities to the local plant-soil environment. Ecology, 2010, 91(10): 3037-3046. DOI:10.1890/09-1451.1
[36]
Ji B M, Bentivenga S P, Casper B B. Comparisons of AM fungal spore communities with the same hosts but different soil chemistries over local and geographic scales. Oecologia, 2012, 168(1): 187-197. DOI:10.1007/s00442-011-2067-0
[37]
Liu Y J, He J X, Shi G X, An L Z, Öpik M, Feng H Y. Diverse communities of arbuscular mycorrhizal fungi inhabit sites with very high altitude in Tibet Plateau. FEMS Microbiology Ecology, 2011, 78(2): 355-365. DOI:10.1111/j.1574-6941.2011.01163.x
[38]
Vandenkoornhuyse P, Husband R, Daniell T J, Watson I J, Duck J M, Fitter A H, Young J P W. Arbuscular mycorrhizal community composition associated with two plant species in a grassland ecosystem. Molecular Ecology, 2002, 11(8): 1555-1564. DOI:10.1046/j.1365-294X.2002.01538.x
[39]
Klironomos J, Zobel M, Tibbett M, Stock W D, Rillig M C, Parrent J L, Moora M, Koch A M, Facelli J E, Facelli E, Dickie I A, Bever J D. Forces that structure plant communities: quantifying the importance of the mycorrhizal symbiosis. New Phytologist, 2011, 189(2): 366-370. DOI:10.1111/j.1469-8137.2010.03550.x
[40]
Bever J D. Preferential allocation, physio-evolutionary feedbacks, and the stability and environmental patterns of mutualism between plants and their root symbionts. New Phytologist, 2015, 205(4): 1503-1514. DOI:10.1111/nph.13239
[41]
Mack K M L, Bever J D. Coexistence and relative abundance in plant communities are determined by feedbacks when the scale of feedback and dispersal is local. Journal of Ecology, 2014, 102(5): 1195-1201. DOI:10.1111/1365-2745.12269
[42]
Bauer J T, Koziol L, Bever J D. Local adaptation of mycorrhizae communities changes plant community composition and increases aboveground productivity. Oecologia, 2020, 192(3): 735-744. DOI:10.1007/s00442-020-04598-9
[43]
Semchenko M, Leff J W, Lozano Y M, Saar S, Davison J, Wilkinson A, Jackson B G, Pritchard W J, De Long J R, Oakley S, Mason K E, Ostle N J, Baggs E M, Johnson D, Fierer N, Bardgett R D. Fungal diversity regulates plant-soil feedbacks in temperate grassland. Science Advances, 2018, 4(11): eaau4578. DOI:10.1126/sciadv.aau4578
[44]
O'Connor P J, Smith S E, Smith F A. Arbuscular mycorrhizas influence plant diversity and community structure in a semiarid herbland. New Phytologist, 2002, 154(1): 209-218. DOI:10.1046/j.1469-8137.2002.00364.x
[45]
Wagg C, Jansa J, Stadler M, Schmid B, van der Heijden M G A. Mycorrhizal fungal identity and diversity relaxes plant-plant competition. Ecology, 2011, 92(6): 1303-1313. DOI:10.1890/10-1915.1
[46]
Petermann J S, Fergus A J F, Turnbull L A, Schmid B. Janzen-Connell effects are widespread and strong enough to maintain diversity in grasslands. Ecology, 2008, 89(9): 2399-2406. DOI:10.1890/07-2056.1
[47]
Mangan S A, Schnitzer S A, Herre E A, Mack K M L, Valencia M C, Sanchez E I, Bever J D. Negative plant-soil feedback predicts tree-species relative abundance in a tropical forest. Nature, 2010, 466(7307): 752-755. DOI:10.1038/nature09273
[48]
Bennett J A, Cahill Jr J F. Fungal effects on plant-plant interactions contribute to grassland plant abundances: evidence from the field. Journal of Ecology, 2016, 104(3): 755-764. DOI:10.1111/1365-2745.12558
[49]
Vogelsang K M, Bever J D. Mycorrhizal densities decline in association with nonnative plants and contribute to plant invasion. Ecology, 2009, 90(2): 399-407. DOI:10.1890/07-2144.1
[50]
Menzel A, Hempel S, Klotz S, Moora M, Pyšek P, Rillig M C, Zobel M, Kühn I. Mycorrhizal status helps explain invasion success of alien plant species. Ecology, 2017, 98(1): 92-102. DOI:10.1002/ecy.1621
[51]
Pringle A, Bever J D, Gardes M, Parrent J L, Rillig M C, Klironomos J N. Mycorrhizal Symbioses and Plant Invasions. Annual Review of Ecology, Evolution, and Systematics, 2009, 40: 699-715. DOI:10.1146/annurev.ecolsys.39.110707.173454
[52]
Johnson N C, Zak D R, Tilman D, Pfleger F L. Dynamics of vesicular-arbuscular mycorrhizae during old field succession. Oecologia, 1991, 86(3): 349-358. DOI:10.1007/BF00317600
[53]
Hoeksema J D, Chaudhary V B, Gehring C A, Johnson N C, Karst J, Koide R T, Pringle A, Zabinski C, Bever J D, Moore J C, Wilson G W T, Klironomos J N, Umbanhowar J. A meta-analysis of context-dependency in plant response to inoculation with mycorrhizal fungi. Ecology Letters, 2010, 13(3): 394-407. DOI:10.1111/j.1461-0248.2009.01430.x
[54]
Janos D P. Mycorrhizae influence tropical succession. Biotropica, 1980, 12(2): 56-64. DOI:10.2307/2388157
[55]
Koziol L, Bever J D. Mycorrhizal response trades off with plant growth rate and increases with plant successional status. Ecology, 2015, 96(7): 1768-1774. DOI:10.1890/14-2208.1
[56]
Koziol L, Bever J D. AMF, phylogeny, and succession: specificity of response to mycorrhizal fungi increases for late-successional plants. Ecosphere, 2016, 7(11): e01555.
[57]
Koziol L, Bever J D. The missing link in grassland restoration: arbuscular mycorrhizal fungi inoculation increases plant diversity and accelerates succession. Journal of Applied Ecology, 2017, 54(5): 1301-1309. DOI:10.1111/1365-2664.12843
[58]
Koziol L, Bever J D. Mycorrhizal feedbacks generate positive frequency dependence accelerating grassland succession. Journal of Ecology, 2019, 107(2): 622-632. DOI:10.1111/1365-2745.13063
[59]
Miller T E, Burns J H, Munguia P, Walters E L, Kneitel J M, Richards P M, Mouquet N, Buckley H L. A critical review of twenty years' use of the resource-ratio theory. The American Naturalist, 2005, 165(4): 439-448. DOI:10.1086/428681
[60]
Delaux P M, Schornack S. Plant evolution driven by interactions with symbiotic and pathogenic microbes. Science, 2021, 371(6531): eaba6605. DOI:10.1126/science.aba6605
[61]
Tedersoo L, Bahram M, Zobel M. How mycorrhizal associations drive plant population and community biology. Science, 2020, 367(6480): eaba1223. DOI:10.1126/science.aba1223
[62]
Bever J D, Broadhurst L M, Thrall P H. Microbial phylotype composition and diversity predicts plant productivity and plant-soil feedbacks. Ecology Letters, 2013, 16(2): 167-174. DOI:10.1111/ele.12024
[63]
van der Putten W H, Van Dijk C, Peters B A M. Plant-specific soil-borne diseases contribute to succession in foredune vegetation. Nature, 1993, 362(6415): 53-56. DOI:10.1038/362053a0
[64]
Mitchell C E, Agrawal A A, Bever J D, Gilbert G S, Hufbauer R A, Klironomos J N, Maron J L, Morris W F, Parker I M, Power A G, Seabloom E W, Torchin M E, Vázquez D P. Biotic interactions and plant invasions. Ecology Letters, 2006, 9(6): 726-740. DOI:10.1111/j.1461-0248.2006.00908.x
[65]
Eppinga M B, Baudena M, Johnson D J, Jiang J, Mack K M L, Strand A E, Bever J D. Frequency-dependent feedback constrains plant community coexistence. Nature Ecology & Evolution, 2018, 2(9): 1403-1407.
Parker I M, Saunders M, Bontrager M, Weitz A P, Hendricks R, Magarey R, Suiter K, Gilbert G S. Phylogenetic structure and host abundance drive disease pressure in communities. Nature, 2015, 520(7548): 542-544. DOI:10.1038/nature14372
[68]
Rowe H I, Brown C S, Paschke M W. The influence of soil inoculum and nitrogen availability on restoration of high-elevation steppe communities invaded by bromus tectorum. Restoration Ecology, 2009, 17(5): 686-694. DOI:10.1111/j.1526-100X.2008.00385.x
[69]
Stein C, Rißmann C, Hempel S, Renker C, Buscot F, Prati D, Auge H. Interactive effects of mycorrhizae and a root hemiparasite on plant community productivity and diversity. Oecologia, 2009, 159(1): 191-205. DOI:10.1007/s00442-008-1192-x
[70]
van der Heijden M G A, Verkade S, de Bruin S J. Mycorrhizal fungi reduce the negative effects of nitrogen enrichment on plant community structure in dune grassland. Global Change Biology, 2008, 14(11): 2626-2635. DOI:10.1111/j.1365-2486.2008.01691.x
[71]
van der Putten W H. Plant defense belowground and spatiotemporal processes in natural vegetation. Ecology, 2003, 84(9): 2269-2280. DOI:10.1890/02-0284
[72]
Werner G D A, Strassmann J E, Ivens A B F, Engelmoer D J P, Verbruggen E, Queller D C, Noe R, Johnson N C, Hammerstein P, Kiers E T. Evolution of microbial markets. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(4): 1237-1244. DOI:10.1073/pnas.1315980111
[73]
Brandt A J, de Kroon H, Reynolds H L, Burns J H. Soil heterogeneity generated by plant-soil feedbacks has implications for species recruitment and coexistence. Journal of Ecology, 2013, 101: 277-286. DOI:10.1111/1365-2745.12042